The C-terminal carboxy group of T7 RNA polymerase ensures efficient magnesium ion-dependent catalysis.

نویسندگان

  • J Lykke-Andersen
  • J Christiansen
چکیده

DNA and RNA polymerases use divalent metal ions for catalysis. Crystal structures of several polymerases reveal that two acidic residues are involved in coordinating two metal ions at the catalytic centre. Bacteriophage RNA polymerases contain a highly conserved C-terminus with the carboxylate positioned near the active site. We examined whether theC-terminal carboxy group of T7 RNA polymerase is important for magnesium ion-dependent catalysis. Introduction of a methyl ester or decarboxylation of the C-terminal carboxy group was achieved with an intein-based protein expression system and an elongation rate assay was developed to test the effects of the modifications. The results show that enzymes with a modified C-terminal carboxy group exhibit a magnesium ion-dependent decrease in catalytic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependence of M1 RNA substrate specificity on magnesium ion concentration.

We have constructed a plasmid expressing E. coli M1 RNA, the catalytic RNA subunit of ribonuclease P, under the control of a phage T7 promoter. The active M1 RNA species synthesized in vitro by T7 RNA polymerase from this vector was reacted with the tRNA(Gln) - tRNA(Leu) precursor RNA (Band K) encoded by phage T4. Only the tRNA(Leu) moiety of this dimeric precursor RNA contains the 3' terminal ...

متن کامل

Tests of a model for promoter recognition by T7 RNA polymerase: thymine methyl group contacts.

The DNA-dependent RNA polymerase from bacteriophage T7 is highly specific for a 17 base promoter sequence. Interactions between T7 RNA polymerase and its promoter DNA have been probed using modified oligonucleotides and a steady-state kinetic assay. The incorporation of deoxyuridine in place of thymidine at individual sites in the promoter sequence results in the replacement of an exocyclic met...

متن کامل

Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase.

Coliphage N4 virion RNA polymerase (vRNAP), the most distantly related member of the T7-like family of RNA polymerases, is responsible for transcription of the early genes of the linear double-stranded DNA phage genome. Escherichia coli single-stranded DNA-binding protein (EcoSSB) is required for N4 early transcription in vivo, as well as for in vitro transcription on super-coiled DNA templates...

متن کامل

Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain

Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...

متن کامل

Crystallization and preliminary diffraction analysis of a group I ribozyme from bacteriophage Twort.

Group I introns are catalytic RNAs that are capable of performing a variety of phosphotransesterification reactions including self-splicing and RNA cleavage. The reactions are efficient, accurate and dependent only on the presence of guanosine-nucleotide substrate and sufficient magnesium ion to stabilize the structure of the RNA. To understand how the group I intron active-site facilitates cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 24  شماره 

صفحات  -

تاریخ انتشار 1998